Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-KB and p53 modulation

نویسندگان

  • Stefano Monteghirfo
  • Francesca Tosetti
  • Claudia Ambrosini
  • Sara Stigliani
  • Sarah Pozzi
  • Francesco Frassoni
  • Gianfranco Fassina
  • Simona Soverini
  • Adriana Albini
  • Nicoletta Ferrari
چکیده

The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/ Akt and nuclear factor-KB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl(+) myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-KB and Akt pathways and angiogenesis. Here, we show that xanthohumol has in vitro activity against Bcr-Abl(+) cells and clinical samples and retained its cytotoxicity when imatinib mesylate–resistant K562 cells were examined. Xanthohumol inhibition of K562 cell viability was associated with induction of apoptosis, increased p21 and p53 expression, and decreased survivin levels. We show that xanthohumol strongly inhibited Bcr-Abl expression at both mRNA and protein levels and show that xanthohumol caused elevation of intracellular reactive oxygen species and that the antioxidant N-acetylcysteine blunted xanthohumol-induced events. Further, we observed that xanthohumol inhibits leukemia cell invasion, metalloprotease production, and adhesion to endothelial cells, potentially preventing in vivo life-threatening complications of leukostasis and tissue infiltration by leukemic cells. As structural mutations and/or gene amplification in Bcr-Abl can circumvent an otherwise potent anticancer drug such as imatinib, targeting Bcr-Abl expression as well as its kinase activity could be a novel additional therapeutic approach for the treatment of Bcr-Abl(+) myeloid leukemia. [Mol Cancer Ther 2008;7(9):2692–702]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation.

The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/Akt and nuclear factor-kappaB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl+ myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-kappaB and Akt pathways and angiogenesis. Here, we show that xantho...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells.

BCR-ABL and v-ABL are oncogenic forms of the Abl tyrosine kinase that can cause leukemias in mice and humans. ABL oncogenes trigger multiple signaling pathways whose contribution to transformation varies among cell types. Activation of phosphoinositide 3-kinase (PI3K) is essential for ABL-dependent proliferation and survival in some cell types, and global PI3K inhibitors can enhance the antileu...

متن کامل

Imatinib mesylate induces cisplatin hypersensitivity in Bcr-Abl+ cells by differential modulation of p53 transcriptional and proapoptotic activity.

Imatinib is highly effective in inducing remission in chronic myelogenous leukemia (CML). However, complete eradication of the malignant clone by imatinib is rare. We investigated the efficacy of combining imatinib with cisplatin. Inhibition of Bcr-Abl by imatinib induced a hypersensitive phenotype both in Bcr-Abl(+) cell lines and in CD34(+) cells from CML patients. Importantly, cisplatin sens...

متن کامل

Evaluation of the Effect of Curcumin and Imatinib on BCR-ABL Expression Gene in Chronic Human k562 Cells

Background and Aims: Detection of overexpression in tumor-inhibiting genes provides valuable information for leukemia diagnosis and prognosis. Chronic myeloid leukemia (CML) is a stem cell disorder determined by a well-defined genetic anomaly involving BCR-ABL translocation in the Philadelphia chromosome. Curcumin is a chemo-preventive agent for the primary cancer targets, such as the breast, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008